39 research outputs found

    Anti-herpes simplex virus activity of extracts from the culinary herbs Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L.

    Get PDF
    This study demonstrates anti-herpes simplex virus activity of dichloromethane and methanol extracts of Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. Green monkey kidney cellswere protected from HSV-2 infection by the dichloromethane extract of O. americanum L. and the methanol extract of O. sanctum, with therapeutic indexes (TI) of 1.865 and 1.644, respectively, when the cells were treated before viral infection. Herpes simplex virus-2 (HSV-2) infection was inhibited during viral adsorption when the cells were treated with methanol extracts of O. americanum L., O. sanctum L. and O. basilicum L. with TI of 2.345, 2.473 and 1.563, respectively, whereas dichloromethane extracts ofO. americanum L. and O. basilicum L. resulted in TI of 2.623 and 1.835, respectively. The methanol extract of O. americanum L. and the dichloromethane extract of O. basilicum L. inhibited HSV-1F with TI of 1.63 and 2.215, respectively, after viral adsorption. The inhibitory effects of extracts on HSV-2G, after viral adsorption, were quite high, for the dichloromethane extract of O. sanctum L. and the methanol extract of O. sanctum L. with TI of 10.003 and 29.395, respectively. The inhibitory effect of the O. americanum L. extract on HSV-1F and HSV-2 yield, after viral replication, was highest 30 h after treatment. The reduction of viral titers by 8.0 and 10.8 folds was observed when cells were treated with dichloromethane and methanol extracts of O. americanum L. Moreover, time-dependent virucidal effects of the extract on viral particles were demonstrated, since direct inhibition of both HSV-1F and HSV-2G was shown by a reduction in the amount of plaques by 100%, after treatment with the dichloromethane and methanol extracts of O. americanum L. Therefore, dichloromethane and methanol extracts of O. sanctum L., O. basilicum L. and O. americanum L. showed anti-HSV activities at varioussteps of the viral multiplication cycle.Key words: Medicinal plant, herpes simplex virus, Ocimum sanctum L., Ocimum basilicum L., Ocimum americanum L

    Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK Pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin is a principal compound of turmeric, commonly used to treat tumors and other diseases. However, its anti-cancer activity in human acute monocytic leukemia THP-1 cells is not clear. This study aimed to study the anti-cancer effect and action of curcumin on THP-1 cells.</p> <p>Methods</p> <p>THP-1 parental cells and PMA-treated THP-1 cells, were used as <it>in vitro </it>models to evaluate the anti-cancer effect and mechanism of curcumin. Apoptosis and its mechanism were evaluated by WST-1, flow cytometry and Western blotting. MAPK inhibitors were used to further confirm the molecular mechanism of curcumin-induced THP-1 cell apoptosis.</p> <p>Results</p> <p>Curcumin induced cell apoptosis of THP-1 cells as shown by cell viability, cell cycle analysis and caspase activity. Curcumin significantly increased the phosphorylation of ERK, JNK and their downstream molecules (c-Jun and Jun B). Inhibitor of JNK and ERK reduced the pro-apoptotic effect of curcumin on THP-1 cells as evidenced by caspase activity and the activation of ERK/JNK/Jun cascades. On the contrary, the pro-apoptotic effect of curcumin was abolished in the differentiated THP-1 cells mediated by PMA.</p> <p>Conclusions</p> <p>This study demonstrates that curcumin can induce the THP-1 cell apoptosis through the activation of JNK/ERK/AP1 pathways. Besides, our data suggest its novel use as an anti-tumor agent in acute monocytic leukemia.</p

    Folate Decorated Dual Drug Loaded Nanoparticle: Role of Curcumin in Enhancing Therapeutic Potential of Nutlin-3a by Reversing Multidrug Resistance

    Get PDF
    Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP) is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR) by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs) surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined) and single or dual drug loaded nanoparticles (unconjugated/folate conjugated). The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs) over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFΞΊB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype

    Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro

    Get PDF
    Aim: With the purpose of delivering high doses of glabrescione B (GlaB) to solid tumors after systemic administration, long-circulating GlaB-loaded oil-cored polymeric nanocapsules (NC-GlaB) were formulated. Materials & methods: Synthesis of GlaB and its encapsulation in nanocapsules (NCs) was performed. Empty and GlaB- loaded NCs were assessed for their physico-chemical properties, in vitro cytotoxicity and in vivo biodistribution. Results: GlaB was ef ciently loaded into NCs (~90%), which were small (~160 nm), homogeneous and stable upon storage. Further, GlaB and NC-GlaB demonstrated speci c activities against the cancer stem cells. Preliminary studies in tumor-bearing mice supported the ability of NC to accumulate in pancreatic tumors. Conclusion: This study provides early evidence that NC-GlaB has the potential to be utilized in a preclinical setting and justi es the need to perform therapeutic experiments in mice

    Curcuminoid Binding to Embryonal Carcinoma Cells: Reductive Metabolism, Induction of Apoptosis, Senescence, and Inhibition of Cell Proliferation

    Get PDF
    Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60%) or bisdemethoxycurcumin (55%). Continual exposure of NT2/D1 cells for 4–6 days to either preparation in cell culture media reduced cell division (1–5 Β΅M), induced senescence (6–7 Β΅M) or comprehensive cell death (8–10 Β΅M) in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 Β΅M) for 0.5–4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6–10 Β΅M range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are sequentially activated and that this activation is dependent on the affinity of curcuminoids for the respective binding sites. Defined serum-solubilized curcuminoids used in cell culture media are thus suitable for further investigating the differential activation of signal transduction pathways
    corecore